Vector Potentials with Mixed Boundary Conditions. Application to the Stokes Problem with Pressure and Navier-type Boundary Conditions
نویسندگان
چکیده
In a three-dimensional bounded possibly multiply connected domain, we prove the existence, uniqueness, and regularity of some vector potentials, associated with divergence-free function satis...
منابع مشابه
Navier-Stokes equations with periodic boundary conditions and pressure loss
We present in this note the existence and uniqueness results for the Stokes and Navier-Stokes equations which model the laminar flow of an incompressible fluid inside a two-dimensional channel of periodic sections. The data of the pressure loss coefficient enables us to establish a relation on the pressure and to thus formulate an equivalent problem.
متن کاملNonsteady Navier-stokes Equations with Homogeneous Mixed Boundary Conditions
Let Ω be a bounded domain in IR with a Lipschitz boundary, ∂Ω ∈ | C and let Γ1, Γ2 be open disjoint subsets of ∂Ω such that ∂Ω = Γ1 ∪ Γ2, Γ1 6= ∅ and the 1-dimensional measure of ∂Ω − (Γ1 ∪ Γ2) is zero. The domain Ω represents a channel filled up with a fluid, Γ1 is a fixed wall and Γ2 is both the input and the output of the channel. Let T ∈ (0,∞], Q = Ω×(0, T ). The classical formulation of ou...
متن کاملSpectral discretization of the Stokes problem with mixed boundary conditions
The variational formulation of the Stokes problem with three independent unknowns, the vorticity, the velocity and the pressure, was born to handle non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We propose an extension of this formulation to the case of mixed boundary conditions in a three-dimensional domain. N...
متن کاملFinite Element Discretization of the Stokes and Navier-Stokes Equations with Boundary Conditions on the Pressure
We consider the Stokes and Navier–Stokes equations with boundary conditions of Dirichlet type on the velocity on one part of the boundary and involving the pressure on the rest of the boundary. We write the variational formulations of such problems. Next we propose a finite element discretization of them and perform the a priori and a posteriori analysis of the discrete problem. Some numerical ...
متن کاملBoundary Layer Analysis of the Navier-stokes Equations with Generalized Navier Boundary Conditions
We study the weak boundary layer phenomenon of the Navier-Stokes equations with generalized Navier friction boundary conditions, u ·n = 0, [S(u)n] tan +Au = 0, in a bounded domain in R when the viscosity, ε > 0, is small. Here, S(u) is the symmetric gradient of the velocity, u, and A is a type (1, 1) tensor on the boundary. When A = αI we obtain Navier boundary conditions, and when A is the sha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Mathematical Analysis
سال: 2021
ISSN: ['0036-1410', '1095-7154']
DOI: https://doi.org/10.1137/20m1332189